
Asynchronous Signal-Safe Functions

According to Section 7.14.1.1 of the C Rationale [ISO/IEC 2003]:

When a signal occurs, the normal flow of control of a program is interrupted. If a signal occurs
that is being trapped by a signal handler, that handler is invoked. When it is finished, execution
continues at the point at which the signal occurred. This arrangement can cause problems if the
signal handler invokes a library function that was being executed at the time of the signal.

Similarly, Section 7.14.1, paragraph 5 of C99 [ISO/IEC 9899:1999] states that if the signal
occurs other than as the result of calling the abort or raise function, the behavior is undefined if
the signal handler calls any function in the standard library other than the abort() function, the
_Exit() function, or the signal() function with the first argument equal to the signal number
corresponding to the signal that caused the invocation of the handler.

abort fpathconf read sigsuspend
accept fstat readlink sleep
access fsync recv socket
aio error ftruncate recvfrom socketpair
aio return getegid recvmsg stat
aio suspend geteuid rename symlink
alarm getgid rmdir sync
bind getgroups select sysconf
cfgetispeed getpeername sem post tcdrain
cfgetospeed getpgrp send tcflow
cfsetispeed getpid sendmsg tcflush
cfsetospeed getppid sendto tcgetattr
chdir getsockname setgid tcgetp-
chmod getsockopt setpgid tcgetpgrp
chown getuid setsid tcsendbreak
clock gettime kill setsockopt tcsetattr
close link setuid tcsetpgrp
connect listen shutdown time
creat lseek sigaction timer getoverrun
dup lstat sigaddset timer gettime
dup2 mkdir sigdelset timer settime
execle mkfifo sigemptyset times
execve open sigfillset umask
exit pathconf sigismember uname
Exit pause signal unlink

fchmod pipe sigpause utime
fchown poll sigpending wait
fcntl posix trace event sigprocmask waitpid
fdatasync pselect sigqueue write
fork raise sigset


